Discovery Innovation Solutions

System Design and Mission Simulation

Mary Livingston Chief, Systems Analysis Branch

Mary.E.Livingston@nasa.gov

650 604 0148

Ames Exploration Systems Technology Partnerships Forum July 22-23, 2004

Visibility

Excellence

Impact

System Design and Mission Simulation Simulation Support for Spiral Development

SIMULATION SOLUTIONS

Advanced Design Tools
Visualization
Controls and Displays
Training
Human Factors
Automation
Distributed, Collaborative
Environments

MISSION ELEMENTS

Shuttle to ISS

CEV to L₁

LL to L₁

CEV to ISS

MMU

Lunar Lander

Lunar Habitat

BENEFITS

Efficient Design
Mission Safety
Mission Analysis
Cost Savings
Schedule Reduction

mitigation, and survivability

analysis

System Design and Mission Simulation

An Integrated Program for Analysis and Design

System Design and Mission Simulation Exploration Relevant Capabilities

Vehicle Design and Analysis

Engineering Level tools for conceptual development, assessment

- Trade Studies
- Requirements development and validation
- Design and packaging of new concepts
- Models and tools integrated with high fidelity tools for high confidence conceptual analysis
- Heating analysis and TPS sizing
- Controllability studies

High Fidelity Design Tools

- Integrated aerodynamic shape optimization
- Aerodynamic and Structural loads analysis
- Rapid re-design using intelligent database generation methods
 - Optimized data generation requirements
 - Data integration schemes

System Design and Mission Simulation Exploration Relevant Capabilities, cont

Mission Simulation

Integrated, multi-disciplinary process

- Ascent to recovery
- Emergency abort and nominal separations including resultant stability and control analysis and trajectory optimization
- Nominal and failure-response re-entry flight characteristics and heating conditions
- Concurrent design and optimization of vehicle and control system

Integrated risk analysis

- Risk-driven simulations
- Simulation-based update of risk characteristics
- ISHM efficacy analysis

Flight Simulation Development and Integration

Integrated Flight Control System Development and Optimization Piloted Simulation for situation prediction and recovery assessment Integrated Mission simulations Collaborative tools

Applications Experience

Aerothermal Environments and TPS Sizing

X-33

X-34

OSP Concepts

Bantam Lifter

MFR

Vehicle Design

Mars Airplane

SHARP CTV and derivatives

Risk Assessment

Mars Sample Return Re-entry risk assessment

NGLT TSTO 2-Stage Concept

JIMO

Trajectory Modeling

SHARP CTV

NGLT TSTO

Bantam

Alternate Concept and Technology Evaluation

NGLT TSTO and SSTO

NASP

Bantam

Flight Control System Optimization

JSF

UAVs

CTV

Flight Simulation

JSF

SLI Concepts

Rotorcraft

Life Cycle Analysis

NASP

CTV

NGLT

An Integrated Process for High Confidence Conceptual Design

System Design and Mission Simulation Conceptual Vehicle Design

Flight Vehicle Analysis and Design: X-33 Aerothermal Design Database

Multi-discipline/Multi-fidelity High Fidelity Used for Conceptual Design Multi-discipline Products

- Thermal/TPS
- Structures
- Trajectory
- Instrumentation

Novel Design Concepts

Mars Airplane

- Multiple concept/propulsion system designs
- Overall vehicle design and closure

SHARP CTV Design

- Multi-disciplinary design and optimization
- Extensive design cycle
 - » Engineering Analysis
 - » High Fidelity CFD
 - » Wind tunnel Testing
 - » Pilot-in-loop Flight Simulation & Evaluation

High Fidelity Mission Modeling

Separation

- Two-body 6 D.O.F. Simulation
- Simulated Explosion Effects
- Structural Response

Landing Site ID

- Aero/Aerothermal Database
- Trajectory Optimization

Risk Assessment

• Propulsion System PRA

Landing/Recovery

- Stab/Cont Database
- Control system
- Piloted Simulation

System Description

- Vehicle OML
- Propulsion system
- · Structural model

Integrated Flight Control Optimization

Integrated Flight and Mission Simulation

Mission Planning and Analysis

- Mission Visualization
- Visualization from any vantage point
- Virtual "Mission Control" center
- Design, evaluation, and training for actual control centers

Module Design and Development

- Vehicle studies
- Control and display development
- Operational procedures
- Training

System Design and Mission Simulation Partnership Opportunities

Methods Development

Integrated engineering level tools for exploration mission conceptual design Risk assessment and mitigation analysis methods

Multi-disciplinary, multi-fidelity mission simulation and analysis

Process management and intelligent database generation methods

IT insertion analysis within engineering analysis methods for exploration

Optimized collaborative processes and environments

Life-cycle analysis tools

Studies and Designs

Technology trade studies

Mission simulation and analysis

Risk assessment and mitigation studies

Conceptual to preliminary design efforts